ADVANCED HIGHER MATHEMATICS UNIT 2

Outcome 5 HOMEWORK

1. Prove that if n is odd then n^{2} is also odd.
2. a) Prove by induction that if $0<a<b$ then $a^{n}<b^{n}$ for $n>0$.
b) Show by counterexample that this result is not true if $n<0$.
3. Prove by induction that $(1 \times 2)+(2 \times 3)+(3 \times 4)+\ldots+n(n+1)=\frac{1}{3} n(n+1)(n+2)$, for $n \in N$.
4. A pupil testing the formula $n^{2}+n+11$ produces a prime number every time for $n=1,2,3 \ldots$ He therefore predicts that any number of the form $n^{2}+n+11$ where n is a positive integer is prime.

Prove by counterexample that this is not so.
5. Prove that if x and y are rational numbers then $x+y$ is also a rational number.
6. A type of Fibonnacci sequence is defined as $u_{n}=u_{n-1}+u_{n-2}$ where $u_{1}=1, u_{2}=2$, $u_{3}=3$, etc.

Prove that $u_{1}+u_{2}+\ldots+u_{n}=u_{n+2}-2$.
7. Use induction to prove that if $x>0$ then for any $n \in N$

$$
(1+x)^{n+1}>1+(n+1) x .
$$

8. Prove each of the statements below and then use a counter example in each case to show that the converse of each statement is false.
a) If $n>2$ and n is a prime number then n is an odd number.
b) If a and b are odd numbers, then $a+b$ is even.
9. Prove that $\sum_{k=1}^{n}(-1)^{r-1} r^{2}=\frac{1}{2}(-1)^{n-1} n(n+1)$.
10. Evaluate the sum $\sum_{k=1}^{n} \frac{r}{(r+1)!}$ for $n=1,2,3$ and 4 .

Using this, conjecture a formula for the sum and use induction to prove your conjecture.
11. Prove by contradiction that $\log _{10} 5$ is irrational.

